Вторник, 20.11.2018, 19:41
РАЗРАБОТКА ЭЛЕКТРОНИКИ ГлавнаяРегистрацияВход
Приветствую Вас Гость | RSS
Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
 Продолжение 3 Схемотехника УНЧ 

Назад на одну страницу 

Поскольку каскад усиления напряжения должен работать в режиме А (какой сюрприз, не так ли?!), ему необходимо будет работать с током, в 1,5-5 раз бо́льшим ожидаемого максимального базового тока драйверного транзистора, чтобы он никогда не выключался. То же самое относится и к усилителю на полевых МОП-транзисторах, которые будут ожидать (к примеру) максимального тока заряда (или разряда) затворной емкости силой 4 мА на самых высоких амплитудах и частотах. Для упражнения мы будем считать, что ток каскада усиления напряжения (VAS), равен удвоенным потребностям базового тока драйверных транзисторов, т.е. 8 мА.

Входные каскады

Входные каскады всех транзисторных усилителей должны обеспечивать подачу базового тока каскаду усиления напряжения. На этот раз требуется ток, в 2…5 раз бо́льший ожидаемого максимального базового тока каскада усиления напряжения. Если каскад усиления напряжения работает с током покоя 8 мА, то его максимальный коллекторный ток будет составлять 12 мА (постоянный ток + базовый ток драйвера). Предполагая, что коэффициент усиления равен 50 (опять же), это означает, что входной каскад должен иметь возможность выдать 12/50 = 240 мкА, поэтому для сохранения линейности он должен работать при минимальном токе 240 мкА · 2 = 480 мкА.

Входной ток

Входной ток первого каскада определяет входной импеданс усилителя. Используя приведенную выше цифру коллекторного тока, равного 480 мкА, базовый ток входных транзисторов, имеющих коэффициент усиления 100, будет составлять 4,8 мкА,. Если усилитель разработан для работы с входным напряжением 1 В на максимальной мощности, то импеданс составляет: 208 кОм (R = V/I).

Поскольку этот каскад должен быть смещенным, применяем те же правила, что и раньше — границы диапазона составляют от 2 до 5, поэтому максимальное значение резисторов смещения должно быть 208/2 = 104 кОм. Более низкое значение является предпочтительным и я полагаю, что более уместен коэффициент 5, давая 208/5 = 42 кОм (без проблем можно использовать 47 кОм).

Это только рекомендации (естественно) и есть много случаев, при которых ток больше (или меньше), чем предполагалось. Конечным результатом является звук усилителя и подход, описанный в учебниках, не всегда дает ожидаемый результат.

Некоторые заметки по конструкции источника питания

Как известно, поведение трансформатора описывается при резистивной нагрузке в течение полного периода, но если после выпрямителя стоит конденсаторный фильтр (99,9% всех источников питания усилителей) рассчитанные и измеренные цифры никогда не будут совпадать.

Поскольку в течение довольно большого периода времени напряжение переменного тока со вторичной обмотки трансформатора ниже, чем на конденсаторе, то в это время выпрямительные диоды ток не проводят. В течение коротких периодов, когда диоды открываются в проводящее состояние, трансформатор должен восполнить всю энергию, потребленную из конденсатора в период между открытыми состояниями диодов, а также обеспечить мгновенный выходной ток.

Рассмотрим источник питания, показанный на рис. 13. Это абсолютно обычный двухполупериодный выпрямитель с конденсаторным фильтром (для удобства он показан, как однополярный). Предполагается, что схема имеет полное эффективное последовательное сопротивление, равное 1 Ом, образованное сопротивлением обмоток трансформатора (первичной и вторичной). Конденсатор C1 имеет значение 4 700 мкФ. Вторичное напряжение трансформатора равно 28 В. На диодах при полной мощности упадет около 760 мВ.

Рис. 13 Двухполупериодный выпрямитель с конденсаторным фильтром

Трансформатор рассчитан на 60 В·А и имеет сопротивление первичной обмотки 4,3 Ом, вторичной — 0,5 Ом. Эти импедансы пересчитываются на внутреннее сопротивление потерь на медь, равное 1,0 Ом.

При сопротивлении нагрузки 20 Ом, как показано на рисунке и при выходном токе 1,57 А, время проводящего состояния диодов составляет около 3,5 мс, а пиковое значение тока, текущего в конденсатор 100 раз в секунду — 4,8 А (с интервалом в 10 мс). Поэтому время проводящего состояния диодов составляет 35% от длительности цикла. Среднеквадратичный ток во вторичной обмотке трансформатора равен 2,84 А.

Размах пульсаций напряжения на нагрузке (пик-пик) составляет 2,2 В (692 мВ среднеквадратичного значения «RMS») и ожидаемо имеет пилообразную форму. Среднее напряжение постоянного тока составит 31,6 В. Напряжение питания без нагрузки составит 38,3 В, поэтому при выходном токе 1,57 А, потери составят:

где Vn — напряжение без нагрузки;
Vl —напряжение под нагрузкой.

Для данного примера это достаточно близко к 17 %, что вряд ли является хорошим результатом. Для сравнения, фактические потери в трансформаторе будут составлять 8 % для выходного тока 2,14 А при напряжении 28 В. Обратите внимание, что среднеквадратичный переменный ток во вторичной обмотке трансформатора составляет 2,84 А (примерно равный постоянному току, умноженному на 1,8) для выходного постоянного тока силой 1,57 А — это так должно быть, поскольку в противном случае мы что-то получили бы даром — вопреки науке и сборщику налогов.

Выходная мощность составляет 31,6 В · 1,57 А = 49,6 Вт, а по входу — 28 В · 2,84 А = 79 В·А.

Входная мощность трансформатора составляет 60 Вт, поэтому коэффициент мощности:

Следует учесть много потерь, причем, большая часть из них обусловлена падением напряжения на диодах (по 600 мВт на каждый диод, всего 2,4 Вт) и на сопротивлении обмотки трансформатора (8 Вт при полной нагрузке). Даже эквивалентное последовательное сопротивление (ESR) конденсаторов добавляет небольшую потерю, равно как и сетевая проводка. Также имеется дополнительная потеря в «железе» трансформаторного сердечника — это сумма тока, необходимого для поддержания уровня магнитного потока в трансформаторе, плюс потери на вихревые токи, нагревающие сердечник. Потери в железе наиболее значительны при отсутствии нагрузки и могут обычно игнорироваться при полной нагрузке.

Несмотря на то, что для этого примера трансформатор перегружен, при условии, что перегрузка будет кратковременной, никаких повреждений не будет. Трансформаторы обычно рассчитаны на среднюю мощность (В·А) и могут выдерживать большие перегрузки при условии, что долгосрочно не будет превышено среднее значение. Продолжительность допустимой перегрузки в значительной мере определяется тепловой массой самого трансформатора.

Ток пульсаций конденсатора. Хорошо известно, что более крупные трансформаторы обладают лучшими параметрами, чем небольшие, поэтому обычной практикой является использование трансформатора с повышенной мощностью для данного применения. Это может значительно улучшить КПД, но также создаст бо́льшие напряжения на конденсаторе фильтра из-за более высокого тока пульсаций. Этот параметр указывается в даташите производителя для конденсаторов, предназначенных для использования в источниках питания и его нельзя превышать. Чрезмерный ток пульсаций вызовет перегрев и возможный выход конденсаторов из строя.

Большие конденсаторы обычно имеют более высокий номинальный ток пульсаций, чем малые (как физические, так и емкостные). Полезно знать, что два конденсатора емкостью по 4 700 мкФ, как правило, имеют более высокий суммарный ток пульсаций, чем один конденсатор на 10 000 мкФ, а также демонстрируют более низкое ЭПС (эквивалентное последовательное сопротивление). Такая комбинация, как правило, будет и дешевле — один из немногих примеров, когда действительно можно получить что-то ни за что.

Измерения в сравнении с субъективностью

Если я никогда не слышу от кого-то жалоб на то, что «измерения искажений недействительны и являются пустой потерей времени», то это очень скоро произойдет. Как же мне надоели самопровозглашенные эксперты ([игра слов: experts = “x” + “spurt”] где “x” — неизвестная величина, а “spurt” — струя под давлением), утверждающие, что сигналы «реального мира» намного сложнее синусоиды и что статические измерения искажений совершенно бессмысленны! Аналогично, некоторые жалуются на то, что синусоиды «слишком просты» и что они не могут проявить усилитель так же, как музыка.

Измерения не являются бессмысленными и сигналы реального мира являются синусоидами! Единственное различие заключается в том, что в музыке обычно присутствует большое количество объединенных вместе синусоид. Не существует мириад сигналов, одновременно проходящих через усилитель, а только один-единственный (для одного канала, естественно).

Физика утверждает, что никакие две массы не могут одновременно занимать одно и то же физическое пространство, то же самое относится и к напряжениям и токам. В любой момент времени может быть только одно значение напряжения и одно значение тока, протекающего через один элемент схемы — если бы было как-то по другому, то концепция цифровой записи никогда бы не существовала, поскольку в цифровой записи мгновенные значения напряжения преобразуются в цифровой код с частотой выборки. Ситуация была бы явно невозможной, если бы были упомянуты три разных напряжения одновременно.

Итак, как же эти "x-spurts" определяют, имеются ли в усилителе крошечные искажения в виде «ступеньки» (например)? Я рассматриваю их, как остаточные продукты моего измерителя искажений, которые мгновенно распознаются, что же именно представляют собой на самом деле и я вижу разницу, когда выполняю в схеме изменения для устранения проблемы. Если бы мне пришлось полагаться только на свои уши (которые, хоть и становятся старше, но всё еще неплохо мне служат), то потребовалось бы гораздо больше времени, чтобы определить проблему и даже еще больше, чтобы удостовериться, что она исчезла. Я не говорю о действительно грубых искажениях в виде «ступеньки», которые получаются из-за потери смещения в усилителе, я имею в виду рудименты — минимальные величины, едва регистрируемые мультиметром. Чтобы увидеть точную форму искажений, я использую осциллограф. Я подозреваю, что эта дилемма «решена» кем-то просто без применения двухтактного (push-pull) усилителя вообще, тем самым гарантируя, что мощность сильно ограничена, а другие искажения настолько велики, что не посмели опубликовать результаты.

Эти же "x-spurts", если повезет, могут лирически отзываться в отношении какого-то действительно громоздкого несимметричного маломощного усилителя на триодных лампах с весьма сомнительным выходным трансформатором, ограниченным частотным диапазоном и единичным коэффициентом демпфирования.

Не поймите меня неправильно: я не утверждаю, что выше приведена характеристика любых несимметричных триодных усилителей (к примеру), есть некоторые, которые, я уверен, звучат очень красиво. Не так, как мне нравится, но «красиво». Я видел опубликованные в Интернете схемы, которые я бы не использовал даже для динамика радиочасов (никаких имен, поэтому даже не спрашивайте!) и «отзывы» от людей, купивших этот мусор, но, несомненно, есть некоторые схемы, в которых применены действительно качественные компоненты и, вероятно, нормально звучащие при малых уровнях громкости.

Простите, если я говорю излишне пристрастно (даже ядовито), но, откровенно говоря, это плохо. Существует так много людей, размахивающих своим «знанием» и многие из них либо потворствуют Волшебному Рынку, либо говорят сквозь свои шляпы.

Вся идея проведения измерений состоит в том, чтобы гарантировать соответствие продукта некоему стандарту качества. Как только этот стандарт будет убран в ожидании, что судьей станут наши уши, то каким образом мы должны знать, получили ли то, за что заплатили? Если продукт будет звучать «плохо», должны ли мы принять это, как факт, либо, возможно, следует слушать его достаточно долго, чтобы привыкнуть к звуку (в итоге такое произойдет — это привыкание субъективистами называется «вписыванием»). Такое я принять не согласен и знаю, что многие другие чувствуют то же самое.

Пожалуйста, не думайте, что я защищаю технические характеристики, ибо это не так. Мне просто кажется, что потребители имеют право на какой-то минимальный стандарт характеристик, которым аппаратура должна соответствовать (или превышать его). Я еще ни разу не слышал ни одного усилителя с высокими уровнями искажений и/или ограниченной полосой частот, который бы звучал лучше, чем аналогичный усилитель с меньшими искажениями и более широкой полосой пропускания. Это означает, что мы сравниваем подобное с подобным — сравнение хорошего лампового усилителя и неважного транзисторного покажет, что транзисторный усилитель имеет лучшие функции, но мы можем быть уверены, что звучать он будет хуже. В аналогичном ключе хороший транзисторный усилитель по сравнению с довольно плохим ламповым усилителем может вызвать некоторую путаницу, часто из-за низкого коэффициента демпфирования в ламповом усилителе, что позволяет легко представить себе, что он звучит «лучше».

Измерения нужны, потому что они рассказывают о вещах, которые часто или не слышны, или могут быть слышны так, что вводят чувства в заблуждение. Тестовые прослушивания также необходимы, но они должны быть проведены надлежащим образом, в виде истинного слепого A-B теста, в противном случае их результаты просто бессмысленны. Прицельные тесты (в которых точно известно, какое именно оборудование прослушивается) являются фатально ошибочными, т.к. почти всегда обеспечивают заранее ожидаемый результат.

Лампы в сравнении с биполярными и полевыми МОП-транзисторами

Это спор, длящийся годами и, кажется, мы не ближе к разрешению дилеммы, чем были в самом его начале. Я работал со всеми тремя классами компонентов и у каждого есть свои собственные особенности звучания. Коротко рассмотрим различия — это не исчерпывающий их список и это не значит, что перечислены основные моменты, на которые влияет мой собственный опыт (должен сознаться, и предрассудки тоже). Прошу извинить за несколько случайный порядок сравнений:

Лампы:

Лампы являются преобразователями напряжения в ток, поэтому их выходной ток управляется входным напряжением. Для получения выходного напряжения к нагрузке (анодный резистор или трансформатор) необходимо приложить переменный выходной ток.

Лампы сами по себе являются, в сущности, относительно линейными и в ограниченном диапазоне могут работать вообще без обратной связи, по-прежнему обеспечивая сигнал высокого качества. Диапазон, как правило, более чем достаточен для предусилителей, но доведен до максимального предела в усилителях мощности.

Относительно низкий коэффициент усиления единичной лампы означает, что потребуется либо больше ламп, либо меньшая глубина обратной связи.

«Мягкие» характеристики искажений означают, что большинство искажений низкого порядка (включая искажения типа «ступенька», клиппирование) звучат не столь же навязчиво или утомительно, как «жесткое» искажение.

Искажения начинаются постепенно и потеря чистоты звука эффективно предупреждает слушателя о приближении пределов, но не столь навязчиво.

Искажения обычно поддаются измерениям при почти любом уровне мощности, но имеют низкий порядок (в основном это 2-я и 3-я гармоники, обычно присутствуют также небольшие количества дополнительных гармоник).

Ограниченная обратная связь, в основном, из-за того, что выходной трансформатор привносит фазовый сдвиг на низкой и высокой частотах, поэтому большая глубина общей обратной связи, как правило, невозможна без самовозбуждения. Это ведет к(относительно) ограниченной полосе пропускания.

Высокий выходной импеданс означает, что коэффициент демпфирования в усилителях мощности, как правило, довольно плох. Очень трудно достичь очень низких значений выходного импеданса.

Лампы имеют внутри идеальный диэлектрик (в основном, вакуум плюс слюда), что обеспечивает высокую линейность емкости Миллера, однако, неизвестно, способствует ли это каким-либо слышимым преимуществам.

Неэффективный выходной каскад, позволяющий усилителю звучать громче, чем на самом деле, основываясь на реальной мощности. Это может показаться противоречием, но ламповый усилитель имеет «податливый» выход, позволяющий ему обеспечивать более высокое колебание напряжения на высокоимпедансных нагрузках (например, высокочастотный громкоговоритель при резонансе).

Достаточно надежны и могут выдерживать короткие замыкания без повреждений, НО при разомкнутых цепях в выходном трансформаторе могут формироваться высоковольтные выбросы напряжения, которые могут вызвать пробой изоляции в его обмотках или в ламповых гнездах (короткое замыкание — нормально, разомкнутые цепи — плохо).

Обычно довольно терпимы к тяжелым нагрузкам, таким, как электростатические громкоговорители.

Замечательная ностальгическая ценность, которая позволяет людям прощать недостатки и реально полагать, что усилитель на самом деле звучит лучше, чем действительно хороший твердотельный. Адекватное двойное слепое тестирование, как правило, раскрывает правду, при условии, что выходной импеданс твердотельного усилителя модифицируется под импеданс лампового!

Биполярные транзисторы:

По умолчанию биполярные транзисторы являются преобразователями тока в ток. Это означает, что для достижения изменений выходного тока они используют изменения входного тока, который меньше выходного (поэтому и происходит усиление). Опять же, чтобы обеспечить выходное напряжение, необходимо использовать резистор или другую нагрузку. Следует отметить, что в некоторых статьях вы увидите, как автор настаивает на том, что транзисторы управляются напряжением. Однако, я считаю, что это противоречит реальности. Я всегда работал с ними, как с устройствами, управляемыми током и буду продолжать это делать.

Транзисторы также довольно линейны в ограниченном диапазоне, но из-за более низких рабочих напряжений их, как правило, невозможно использовать без обратной связи, если требуется сигнал очень высокого качества, даже в каскадах предусиления.

Высокое и очень высокое усиление единичного транзистора, позволяющее локальной обратной связи линеаризовать схему до применения общей обратной связи.

В большинстве топологий обратной связи искажения начинаются внезапное и без предупреждения.

Искажения низкие или очень низкие, при условии, что не достигается отсечки (клиппирования). Это создает как гармоники низкого порядка, аналогично ламповому усилителю, так и гармоники высокого порядка, которые могут быть очень утомительными.

Полоса пропускания широкая или даже очень широкая, в сочетании с низким фазовым сдвигом, в основном, из-за исключения выходного трансформатора. Широкая полоса пропускания, очевидно, является преимуществом, но фазовый ответ, в отношении его общей ценности для слушателя, весьма спорный.

Обычно большая глубина общей обратной связи, необходимой для линеаризации выходного каскада, особенно в точке смены активной области работы (0 В) выходных каскадов усилителей мощности.

Полное игнорирование разомкнутого состояния цепи нагрузки, но требуют защиты от мгновенного повреждения вследствие короткого замыкания выходных клемм (разомкнутые цепи — норма, короткое замыкание — плохо, т.е. противоположно лампам).

Емкость Миллера в транзисторах имеет несовершенный диэлектрик и изменяется с приложенным напряжением. Это может быть причиной того, что некоторые транзисторные усилители могут самовозбуждаться при определенном уровне напряжения (небольшие всплески самовозбуждения на волне сигнала, но только выше определенного напряжения на транзисторе). Ситуация каверзная.

Непереносимость сложных нагрузок без принятия решительных мер для обеспечения стабильности. Это может существенно увеличить сложность конструкции.

Полевые МОП-транзисторы:

Полевые МОП-транзисторы, подобно лампам, являются преобразователями напряжения в ток и для управления выходным током требуют приложения к затвору напряжения. Выходной ток в напряжение, как и в предыдущих случаях, преобразует резистор или другая нагрузка. Здесь я обсуждаю боковые МОП-транзисторы (предназначенные для аудио), а не переключательные типы. HEXFET и аналогичные коммутационные МОП-транзисторы (вертикальные МОП-транзисторы) на самом деле не подходят для линейного режима и обладают некоторыми интересными механизмами отказов, которые только и ждут, чтобы Вас укусить. Итак, для боковых МОП-транзисторов:

Подобны большинству комментариев о биполярных транзисторах со следующими отличиями:

Начало искажений (клиппирования) не столь дикое (обычно), как у биполярных транзисторов, но гораздо более неожиданное, чем у ламп. Эта разница очень незначительна и ее можно смело игнорировать.

Могут быть не настолько линейными, как лампы или транзисторы, особенно вблизи области отсечки. Большие различия между различными типами (боковые/вертикальные).

Более эффективны, чем лампы, но не столь же эффективны, как биполярные транзисторы. В усилителе на МОП-транзисторах размах изменений выходного напряжения всегда будут меньше, чем в усилителе на биполярных транзисторах (для того же напряжения питания), если не используется вспомогательный источник питания.

Усиление (обычно) выше, чем у ламп, но ниже, чем у биполярных транзисторов, что ограничивает возможности применения местной обратной связи и даже общая (глобальная) обратная связь может не устранить искажений, подобных биполярным транзисторам, особеннодля вертикальных МОП-транзисторов.

Низкие искажения (боковые типы), но чтобы обеспечить достаточную обратную связь для устранения искажений в виде «ступеньки», может потребоваться большее усиления в предыдущих каскадах.

Очень широкая полоса пропускания (лучше, чем у биполярных транзисторов), требующая меньшей компенсации, вследствие чего полная мощность некоторых усилителей распространяется до частоты 100 кГц, однако, это значение является спорным.

Более надежные, чем биполярные транзисторы и не страдают от последствий вторичного пробоя — для защиты от короткого замыкания могут использоваться предохранители и не требуется защита от разомкнутой цепи нагрузки.

Разумно толерантны к тяжелым нагрузкам без чрезмерного усложнения схемы.

Чтобы усложнить вопрос: как указано выше, существуют два основных типа МОП-транзисторов: боковые и вертикальные. Это относится к внутренней структуре. Боковые МОП-транзисторы хорошо подходят для аудио (см. Проект № 101), а вертикальные (например, HEXFET) предназначены для высокоскоростного переключения и для аудио не подходят. Несмотря на это, можно сделать хорошо работающий усилитель и с применением HEXFET, что было достигнуто многими любителями и производителями.

Из-за различий, изложенных выше, очень важно сравнивать подобное с подобными, т.к. каждый класс имеет свои сильные и слабые стороны. Кроме того, каждый из типов твердотельных усилителей имеет свою нишу, где они будут превосходить другие, независимо от технических характеристик. Ламповые усилители являются в их окружении странным персонажем, гораздо вероятнее выбираемыми преданными поклонниками, которые ничего иного не будут использовать, тогда, как большинство пользователей твердотельных усилителей являются (или должны являться) прагматичной группой, пользующейся наиболее подходящей конфигурацией для нужной задачи.

Во время написания этой статьи не было такой вещи, как очень популярный (но неуловимый) «прямой провод с усилением». Но погодите — об этом будет дальше…

Продолжение 4 Схемотехника УНЧ

Вход на сайт
Корзина
Ваша корзина пуста
Поиск
Календарь
«  Ноябрь 2018  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
2627282930
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • База знаний uCoz
  • RadiodesignMyCorp © 2018uCoz
    Яндекс.Метрика